Molecular structure of human galactose mutarotase.

نویسندگان

  • James B Thoden
  • David J Timson
  • Richard J Reece
  • Hazel M Holden
چکیده

Galactose mutarotase catalyzes the conversion of beta-d-galactose to alpha-d-galactose during normal galactose metabolism. The enzyme has been isolated from bacteria, plants, and animals and is present in the cytoplasm of most cells. Here we report the x-ray crystallographic analysis of human galactose mutarotase both in the apoform and complexed with its substrate, beta-d-galactose. The polypeptide chain folds into an intricate array of 29 beta-strands, 25 classical reverse turns, and 2 small alpha-helices. There are two cis-peptide bonds at Arg-78 and Pro-103. The sugar ligand sits in a shallow cleft and is surrounded by Asn-81, Arg-82, His-107, His-176, Asp-243, Gln-279, and Glu-307. Both the side chains of Glu-307 and His-176 are in the proper location to act as a catalytic base and a catalytic acid, respectively. These residues are absolutely conserved among galactose mutarotases. To date, x-ray models for three mutarotases have now been reported, namely that described here and those from Lactococcus lactis and Caenorhabditis elegans. The molecular architectures of these enzymes differ primarily in the loop regions connecting the first two beta-strands. In the human protein, there are six extra residues in the loop compared with the bacterial protein for an approximate longer length of 9 A. In the C. elegans protein, the first 17 residues are missing, thereby reducing the total number of beta-strands by one.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

UDPgalactose 4-epimerase from Saccharomyces cerevisiae. A bifunctional enzyme with aldose 1-epimerase activity.

UDPgalactose 4-epimerase (epimerase) catalyzes the reversible conversion between UDPgalactose and UDPglucose and is an important enzyme of the galactose metabolic pathway. The Saccharomyces cerevisiae epimerase encoded by the GAL10 gene is about twice the size of either the bacterial or human protein. Sequence analysis indicates that the yeast epimerase has an N-terminal domain (residues 1-377)...

متن کامل

High resolution X-ray structure of galactose mutarotase from Lactococcus lactis.

Galactose mutarotase plays a key role in normal galactose metabolism by catalyzing the interconversion of beta-D-galactose and alpha-D-galactose. Here we describe the three-dimensional architecture of galactose mutarotase from Lactococcus lactis determined to 1.9-A resolution. Each subunit of the dimeric enzyme displays a distinctive beta-sandwich motif. This tertiary structural element was fir...

متن کامل

Structural and kinetic studies of sugar binding to galactose mutarotase from Lactococcus lactis.

Galactose mutarotase catalyzes the conversion of beta-D-galactose to alpha-D-galactose in the Leloir pathway for galactose metabolism. The high resolution x-ray structure of the dimeric enzyme from Lactococcus lactis was recently solved and shown to be topologically similar to the 18-stranded, anti-parallel beta-motif observed for domain 5 of beta-galactosidase. In addition to determining the o...

متن کامل

The molecular architecture of galactose mutarotase/UDP-galactose 4-epimerase from Saccharomyces cerevisiae.

The metabolic pathway by which beta-D-galactose is converted to glucose 1-phosphate is known as the Leloir pathway and consists of four enzymes. In most organisms, these enzymes appear to exist as soluble entities in the cytoplasm. In yeast such as Saccharomyces cerevisiae, however, the first and last enzymes of the pathway, galactose mutarotase and UDP-galactose 4-epimerase, are contained with...

متن کامل

Galactose transporters discriminate steric anomers at the cell surface in yeast.

Aldose-1-epimerase or mutarotase (EC 5.1.3.3) catalyzes interconversion of alpha/beta-anomers of aldoses, such as glucose and galactose, and is distributed in a wide variety of organisms from bacteria to humans. Nevertheless, the physiological role of this enzyme has been elusive in most cases, because the alpha-form of aldoses in the solid state spontaneously converts to the beta-form in an aq...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 279 22  شماره 

صفحات  -

تاریخ انتشار 2004